Syllabus for the written examination of Jr. technical Inspector, T&S, Grade D

1) Some Basic Concepts of Chemistry

Introduction: Importance and scope of chemistry. Historical approach to particulate nature of matter, laws of chemical combination, Dalton's atomic theory: concept of elements, atoms and molecules. Atomic and molecular masses. Mole concept and molar mass; percentage composition and empirical and molecular formula; chemical reactions, stoichiometry and calculations based on stoichiometry.

2) : Structure of Atom

Atomic Structure: Review of: Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure.

What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ 2, Schrödinger equation for hydrogen atom. Radial and angular parts of the hydogenic wavefunctions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers ml and ms. Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms). Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations

3) Classification of Elements and Periodicity in Properties: -

Significance of classification, brief history of the development of periodic table, modern periodic law and the present form of periodic table, periodic trends in properties of elements –atomic radii, ionic radii, inert gas radii, ionization enthalpy, electron gain enthalpy, electronegativity, valence

4) Chemical Bonding and Molecular Structure

Valence electrons, ionic bond, covalent bond, bond parameters, Lewis structure, polar character of covalent bond, covalent character of ionic bond, valence bond theory, resonance, geometry of covalent molecules, VSEPR theory, concept of hybridization involving s, p and d orbitals and shapes of some simple molecules, molecular orbital theory of homonuclear diatomic molecules (qualitative idea only). Hydrogen bond.

5) States of Matter: Gases and Liquids, Three states of matter, intermolecular interactions, types of bonding, melting and boiling points, role of gas laws in elucidating the concept of the molecule, Boyle's law, Charle's law, Gay Lussac's law, Avogadro's law, ideal behaviour, empirical derivation of gas equation, Avogadro number, ideal gas equation. Kinetic energy and molecular speeds (elementary idea), deviation from ideal behaviour, liquefaction of gases, critical temperature. Liquid State – Vapour pressure, viscosity and surface tension (qualitative idea only, no mathematical derivations)

6) Redox Reactions :Concept of oxidation and reduction, redox reactions, oxidation number, balancing redox reactions in terms of loss and gain of electron and change in oxidation numbers, applications of redox reactions.

7) s- Block Elements (Alkali and Alkaline earth metals)

Group 1 and Group 2 elements: General introduction, electronic configuration, occurrence, anomalous properties of the first element of each group, diagonal relationship, trends in the variation of properties (such as ionization enthalpy, atomic and ionic radii), trends in chemical reactivity with oxygen, water, hydrogen and halogens; uses. Preparation and Properties of Some Important Compounds: Sodium carbonate, sodium chloride, sodium hydroxide and sodium hydrogencarbonate, biological importance of sodium and potassium. CaO, CaCO3, and industrial use of lime and limestone, biological importance of Mg and Ca

8) Some p-Block Elements :- General Introduction to p-Block Elements Group 13 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous properties of first element of the group; Boronphysical and chemical properties, some important compounds: borax, boric acids, boron hydrides. Aluminium: uses, reactions with acids and alkalies. Group 14 elements: General introduction, electronic configuration, occurrence, variation of properties, oxidation states, trends in chemical reactivity, anomalous behaviour of first element. Carbon - catenation, allotropic forms, physical and chemical properties; uses of some important compounds: oxides. Important compounds of silicon and a few uses : silicon tetrachloride, silicones, silicates and zeolites, their uses.

9) : Organic Chemistry – Some Basic Principles and Techniques General introduction, methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

10) : Organic Chemistry – Some Basic Principles and Techniques General introduction, methods of purification, qualitative and quantitative analysis, classification and IUPAC nomenclature of organic compounds. Electronic displacements in a covalent bond: inductive effect, electromeric effect, resonance and hyper conjugation. Homolytic and heterolytic fission of a covalent bond: free radicals, carbocations, carbanions; electrophiles and nucleophiles, types of organic reactions.

11) Hydrocarbons :- Classification of Hydrocarbons. Aliphatic Hydrocarbons: Alkanes – Nomenclature, isomerism, conformations (ethane only), physical properties, chemical reactions including free radical mechanism of halogenation, combustion and pyrolysis. Alkenes– Nomenclature, structure of double bond (ethene), geometrical isomerism, physical properties, methods of preparation; chemical reactions: addition of hydrogen, halogen, water, hydrogen halides (Markovnikov's addition and peroxide effect), ozonolysis, oxidation, mechanism of electrophilic addition. Alkynes – Nomenclature, structure of triple bond (ethyne), physical properties, methods of preparation, chemical reactions: acidic character of alkynes, addition reaction of - hydrogen, halogens, hydrogen halides and water. Aromatic hydrocarbons – Introduction, IUPAC nomenclature; Benzene: resonance, aromaticity ; chemical properties: mechanism of electrophilic substitution – nitration sulphonation, halogenation, Friedel Craft's alkylation and acylation; directive influence of functional group in mono-substituted benzene; carcinogenicity and toxicity

12) : Environmental Chemistry:- Environmental pollution – Air, water and soil pollution, chemical reactions in atmosphere, smogs, major atmospheric pollutants; acid rain, ozone and its reactions,

effects of depletion of ozone layer, greenhouse effect and global warming – pollution due to industrial wastes; green chemistry as an alternative tool for reducing pollution, strategy for control of environmental pollution.

13) Solid State :- Classification of solids based on different binding forces :molecular, ionic covalent and metallic solids, amorphous and crystalline solids(elementary idea),unit cell in two dimensional and three dimensional lattices, calculation of density of unit cell, packing in solids, packing efficiency, voids ,number of atoms per unit cell in a cubic unit cell, point defects, electrical and magnetic properties, Band theory of metals ,conductors, semiconductors and insulators and n and p type semiconductors

14) Solutions :- Types of solutions, expression of concentration of solutions of solids in liquids, solubility of gases in liquids, solid solutions, colligative properties – relative lowering of vapour pressure, Raoult's law , elevation 8 of B.P., depression of freezing point, osmotic pressure, determination of molecular masses using colligative properties, abnormal molecular mass, Vant Hoff factor.

15) Electrochemistry :- Redox reactions; conductance in electrolytic solutions, specific and molar conductivity variations of conductivity with concentration, Kohlrausch's Law, electrolysis and laws of electrolysis (elementary idea), dry cell – electrolytic cells and Galvanic cells; lead accumulator, EMF of a cell, standard electrode potential, Nernst equation and its application to chemical cells. Relation between Gibbs energy change and EMF of a cell, fuel cells; corrosion.

16) Chemical Kinetics :- Rate of a reaction (average and instantaneous), factors affecting rates of reaction: concentration, temperature, catalyst; order and molecularity of a reaction; rate law and specific rate constant, integrated rate equations and half life (only for zero and first order reactions); concept of collision theory (elementary idea, no mathematical treatment). Activation energy, Arrhenious equation.

17) Surface Chemistry Adsorption – physisorption and chemisorption; factors affecting adsorption of gases on solids; catalysis :homogenous and heterogeneous, activity and selectivity: enzyme catalysis; colloidal state: distinction between true solutions, colloids and suspensions; lyophillic, lyophobic multimolecular and macromolecular colloids; properties of colloids; Tyndall effect, Brownian movement, electrophoresis, coagulation; emulsions – types of emulsions.

18) p-Block Elements :- Group 15 elements: General introduction, electronic configuration, occurrence, oxidation states, trends in physical and chemical properties; nitrogen – preparation, properties and uses; compounds of nitrogen: preparation and properties of ammonia and nitric acid, oxides of nitrogen (structure only); Phosphorous-allotropic forms; compounds of phosphorous: preparation and properties of phosphine ,halides (PCI3 , PCI5) and oxoacids (elementary idea only). Group 16 elements : General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical properties; dioxygen: preparation, properties and uses; classification of oxides; ozone. Sulphur – allotropic forms; compounds of sulphur: preparation, properties and uses of sulphur dioxide; sulphuric acid: industrial process of manufacture, properties and uses, oxoacids of sulphur (structures only). Group 17 elements : General introduction, electronic configuration, oxidation states, occurrence, trends in physical and chemical in physical and chemical properties; compounds of halogens: preparation, properties and uses of chlorine and hydrochloric acid, interhalogen compounds, oxoacids of halogens (structures only). Group 18 elements: General introduction, electronic configuration, occurrence, trends in physical and chemical properties, uses.

d and f Block Element General introduction ,electronic configuration, occurrence and characteristics of transition metals, general trends in properties of the first row transition metals – metallic character, ionization enthalpy, oxidation states, ionic radii, colour, catalytic property, magnetic properties, interstitial compounds, alloy formation. Preparation and properties of K2 Cr2 O7 and KMnO4 . Lanthanoids – electronic configuration, oxidation states, chemical reactivity and lanthanoid contraction and its consequences. Actinoids – Electronic configuration, oxidation states and comparison with lanthenoids .

19) Coordination Compounds :- Coordination compounds : Introduction, ligands, coordination number, colour, magnetic properties and shapes, IUPAC nomenclature of mononuclear coordination compounds, bonding, Werner's theory VBT,CFT; isomerism (structural and stereo)importance of coordination compounds (in qualitative analysis, extraction of metals and biological systems).

20) Haloalkanes and Haloarenes: Haloalkanes: Nomenclature, nature of C-X bond, physical and chemical properties, mechanism of substitution reactions. Optical rotation. Haloarenes: Nature of C-X bond, substitution reactions (directive influence of halogen for monosubstituted compounds only). Uses and environmental effects of – dichloromethane, trichloromethane, tetrachloromethane, iodoform, freons, DDT.

21) : Alcohols, Phenols and Ethers :- Alcohols: Nomenclature, methods of preparation, physical and chemical properties (of primary alcohols only); identification of primary, secondary and tertiary alcohols; mechanism of dehydration, uses, with special reference to methanol and ethanol. Phenols : Nomenclature, methods of preparation, physical and chemical properties, acidic nature of phenol, electrophillic substitution reactions, uses of phenols. Ethers : Nomenclature, methods of preparation, physical and chemical properties, uses.

22) Aldehydes, Ketones and Carboxylic Acids:- Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, and mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses. Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses

23) Aldehydes, Ketones and Carboxylic Acids :- Aldehydes and Ketones: Nomenclature, nature of carbonyl group, methods of preparation, physical and chemical properties, and mechanism of nucleophilic addition, reactivity of alpha hydrogen in aldehydes; uses. Carboxylic Acids: Nomenclature, acidic nature, methods of preparation, physical and chemical properties; uses

24) Polymers: Classification – Natural and synthetic, methods of polymerization (addition and condensation), copolymerization. Some important polymers: natural and synthetic like polythene, nylon, polyesters, bakelite, rubber. Biodegradable and non-biodegradable polymers.

25) Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Drawbacks of VBT. IUPAC system of nomenclature.

26) Chemical Equilibrium: Free energy change in a chemical reaction. Thermodynamic derivation of the law of chemical equilibrium. Distinction between ΔG and ΔG° , Le Chatelier's principle. Relationships between Kp, Kc and Kx for reactions involving ideal gases.

27) Ionic Equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water. Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-calculation of hydrolysis constant, degree of

hydrolysis and pH for different salts. Buffer solutions. Solubility and solubility product of sparingly soluble salts – applications of solubility product principle

28) Units and Measurements :- Units of measurement; systems of units; SI units, fundamental and derived units. significant figures. Dimensions of physical quantities, dimensional analysis and its applications

29) General Knowledge